
 Integrated Design and Process Technology, IDPT-2003
 Printed in the United States of America, June, 2003
 2003 Society for Design and Process Science

 1

SYSTEM-LEVEL TESTS WITH TTCN-3

Ina Schieferdecker, Fraunhofer FOKUS, Berlin, Germany,

schieferdecker@fokus.fhg.de

Abstract

System-level testing considers functionality and load
aspects to check how a system performs for single service
requests and scales as the number of service requests
accessing/using it increases. This paper presents a flexible
test framework including functional, service interaction
and load tests. It is generic in terms of being to a large
extend independent of the system to be tested. The paper
discusses the automation of the test framework with the
Testing and Test Control Notation TTCN-3. The test
framework is exemplified for Web service tests.

INTRODUCTION

The Testing and Test Control Notation TTCN-3 has
been developed by the European Telecommunication
Standards Institute (ETSI) to address testing needs of
modern Telco and IT technologies and to widen the scope
of applicability. TTCN-3 enables systematic,
specification-based testing for various kinds of tests
including e.g. functional, scalability, load,
interoperability, robustness, regression, system and
integration testing. TTCN-3 is a language to define test
procedures to be used for black-box testing of distributed
systems. It allows an easy and efficient description of
complex distributed test behavior in terms of sequences,
alternatives, and loops of stimuli and responses. The test
system can use a number of test components to perform
test procedures in parallel. TTCN-3 is a modular language
that has a similar look and feel to a typical programming
language. However, in addition to the typical
programming constructs, it contains all the important
features necessary to specify test procedures and test
campaigns like test verdicts, matching mechanisms to
compare the reactions of the SUT with the expected range
of values, timer handling, distributed test components,
ability to specify encoding information, synchronous and
asynchronous communication, and monitoring.

This paper discusses the application of TTCN-3 for
system-level tests. It describes a test framework with
predefined test scenarios and test setups, which can be
adapted to different system under tests by exchanging the
modules for the basic functional tests only. The basic idea

is to define a hierarchy of tests for service interaction,
scalability and load tests by reusing basic functional tests
for the system under test. Test components are used to
emulate system clients. These test components perform
the basic functional tests to evaluate the reaction of the
system to selected service requests or complex service
request scenarios. The combination of test components
performing different basic functional tests and being
executed in parallel leads to different test scenarios for the
system under tests and support the evaluation of various
system aspects. Parameterization of this test framework
enables flexible test setups with varying functional and
performance load.

The test framework is based on a set of basic
functional tests for the individual services of a system. In
separate functional tests, each of those basic functional
tests is performed. A service interaction test checks the
simultaneous request of different services by applying
several basic functional tests concurrently. A separate
load test for individual services checks for scalability and
load aspects of selected services by using several test
components with the same basic functional test, while
combined load test checks for a mixture of requests for
different services. These combined load tests use test
components performing different functional tests. All the
tests return not only a test verdict but also the response
times for the individual requests. A key element of this
test framework is its genericity of being to a large degree
independent of the concrete system to be tested.

The application of this test framework to an example
Web service is presented. At first, an overview on Web
services, XML and SOAP and a discussion on testing
Web services are given. The test framework is presented
next. Selected details of the test framework are discussed.
Conclusions finish the paper.

WEB SERVICES
A Web service is a URL-addressable resource

returning information in response to client requests. Web
services are integrated into other applications or Web
sites, even though they exist on other servers. So for
example, a Web site providing quotes for car insurance

 Integrated Design and Process Technology, IDPT-2003
 Printed in the United States of America, June, 2003
 2003 Society for Design and Process Science

 2

could make requests behind the scenes to a Web service
to get the estimated value of a particular car model and to
another Web service to get the current interest rate.

XML stands for Extensible Markup Language and as
its name indicates, the prime purpose of XML was for the
marking up of documents. Marking up a document consist
in wrapping specific portions of text in tags that convey a
meaning and thus making it easier to locate them and also
manipulating a document based on these tags or on their
attributes. Attributes are special annotations associated to
a tag that can be used to refine a search. An XML
document has with its tags and attributes a self-
documenting property that has been rapidly considered
for a number of other applications than document markup.
This is the case of configuration files for software but also
telecommunication applications for transferring control or
application data like for example to Web pages.

XML follows a precise syntax and allows for
checking well-formedness and conformance to a grammar
using a Document Type Description (DTD) that could
either be interpreted as a BNF like grammar specification
or in some cases as a data type. A DTD consists of a set
of production rules for elements that have a name and
describe its content as empty, any, mixed, choice or
sequence. An element can also contain attributes that are
declared separately. While DTDs are appropriate for
marking up text, they are very limited for other
applications because the two basic types CDATA and
PCDATA are too general for any precise data typing as in
other widely used programming languages. Consequently,
the new XML data typing model called Schema was
developed. XML schemas [2] are defined using the same
basic XML syntax of tags and end tags and actually
follow a well-defined DTD. Second, XML schemas are
true data types and contain many of the data typing
features found in most of the recent high level
programming languages. The central concept of XML
schemas is the building block approach by defining
components that consist themselves of type definitions
and element declarations. XML Schemas are very flexible
and allow describing the same rules in many different
ways depending on the use of type inheritance,
restrictions and extensions, global and local definitions,
embedded, flat catalog and named type structuring
constructs.

This paper uses a weather service as an example: the
weather is given for a location being a city in a country. It
is described in terms of the temperature, the barometric
pressure and further, textually described conditions (see
Figure 1).

The embedded method derives from the nested tags
mechanism of XML itself. In this method, elements are
defined where they are used inside the hierarchy.
Consequently there is no need to name a local type - it is
called an anonymous type. Eventually the leaves of the

tree that constitutes an embedded type definition are
composed exclusively of either primitive types or already
defined types. This implies that a local definition can be
used only once and that there is no need for reusability in
a specific application. The flat catalog approach uses the
concept of substitution. Each element is defined by a
reference to another element declaration. Named types are
the closest to traditional computer languages data typing.
Each element has a name and a type name and each
subtype is defined separately.

 Embedded schema
<schema>
 <element name="weather">
 <complexType>
 <sequence>
 <element name="location">
 <complexType >
 <sequence>
 <simpleType name="city">
 <restriction base="string">
 <pattern value="[a-zA-Z]"/>
 </restriction>
 </simpleType>
 <element name="country" type="string"/>
 </sequence>
 </complexType>
 </element>
 <element name="temperature" type="integer"/>
 <element name="barometric_pressure" type="integer"/>
 <element name="conditions" type="string"/>
 </sequence>
 </complexType>
 </element>
 </schema>

Figure 1. XML Schema for the Weather Service

SOAP is a simple mechanism for exchanging
structured and typed information between peers in a
decentralized distributed environment using XML [5][4].
SOAP as a new technology to support server-to-server
communication competes with other distributed
computing technologies including DCOM, Corba, RMI,
and EDI. Its advantages are a light-weight
implementation, simplicity, open-standards origins and
platform independence.

Testing of Web services (as for any other technology
or system) is useful to prevent late detection of errors
(possibly by dissatisfied users); what typically requires
complex and costly repairs. Testing enables the detection
of errors and the evaluation and approval of system
qualities beforehand. An automated test approach helps in
particular to efficiently repeat tests whenever needed for
new system releases in order to assure the fulfillment of
established system features in the new release. First
approaches towards automated testing with proprietary
test solutions exist [10], however, with such tools one is
bound to the specific tool and its features and capabilities.
Specification-based automated testing, where abstract test
specifications independent of the concrete system to be
tested and independent of the test platform are used, are
superior to proprietary techniques: they improve the
transparency of the test process, increase the
objectiveness of the tests, and make test results
comparable. This is mainly due to the fact that abstract
test specifications are defined in an unambiguous,
standardized notation, which is easier to understand,
document, communicate and to discuss. However, we go

 Integrated Design and Process Technology, IDPT-2003
 Printed in the United States of America, June, 2003
 2003 Society for Design and Process Science

 3

beyond “classical” approaches towards specification-
based automated testing, which till now mainly
concentrate on the automated test implementation and
execution: we consider test generation aspects as well as
the efficient reuse of test cases in a hierarchy of tests.
Testing of Web services has to target three aspects: the
discovery of Web services (i.e. UDDI being not
considered here), the data format exchanged (i.e. WSDL),
and request/response mechanisms (i.e. SOAP). The data
format and request/response mechanisms can be tested
within one test approach: by invoking requests and
observing responses with test data representing valid and
invalid data formats. Since a Web service is a remote
application, which will be accessed by multiple users, not
only functionality in terms of sequences of
request/response and performance in terms of response
time, but also scalability in terms of functionality and
performance under load conditions matters.

THE TEST FRAMEWORK

We have developed a hierarchy of tests for evaluating
Web services for functional and load aspects. The basic
idea is to define service interaction, scalability and load
tests by reusing basic functional tests for the Web service.
Test components are used to emulate Web service clients.
These test components perform basic functional tests to
evaluate the reaction of the Web service to their requests.
The combination of test components performing different
basic functional tests and being executed in parallel leads
to different test scenarios for the Web service.
Parameterization of this test framework enables flexible
test setups with varying functional and performance load.
The basis of the test framework (see Figure 2) is a set of
basic functional tests for the individual services of a Web
service. In separate functional tests, each of those basic
functional tests is performed. A service interaction test
checks the simultaneous request of different services by
applying several basic functional tests concurrently. A
separate load test for individual services checks for
scalability and load aspects of selected services by using
several test components with the same basic functional
test, while combined load test checks for a mixture of
requests for different services. These combined load tests
use test components performing different functional tests.
All the tests return not only a test verdict but also the
response times for the individual requests.

An important aspect of this test framework is its
genericity of being to a large degree independent of the
concrete Web service to be tested. Besides the basic
functional tests, fixed test case definitions for the separate
functional, service interaction, and separate load as well
as for the service mixture load test can be given. Further
test patterns can be envisaged.

Separate

Functional Tests
Service

Interaction Test

Weather

Test

Euro

Weather

Test

Location

Weather

Test

Weather

Test

Euro

Weather

Test

Location

Weather

Test

Separate
Load Tests

Service Mixture
Load Test

Weather

Test

Euro

Weather

Test

Location

Weather

Test

Weather

Test

Euro

Weather

Test

Location

Weather

Test

Weather

Test Weather

Test

Euro

Weather

Test

Euro

Weather

Test

Location

Weather

Test

Location

Weather

Test

Weather

Test

Euro

Weather

Test

Location

Weather

Test

Weather

Test

Euro

Weather

Test

Location

Weather

Test

Weather

Test

Euro

Weather

Test

Location

Weather

Test

Figure 2. Test hierarchy for Web services

The test framework has been realized with the
Testing and Test Control Notation TTCN-3 [7], which has
been developed by the European Telecommunication
Standards Institute ETSI not only for telecommunication
but also for software and data communication systems.
Like any other communication-based system, Web
services are natural candidates for testing using TTCN-3.

OVERVIEW ON TTCN-3

TTCN-3 is a language to define test procedures to be
used for black-box testing of distributed systems. Stimuli
are given to the system under test (SUT), its reactions are
observed and compared with the expected ones. On the
basis of this comparison, the subsequent test behavior is
determined or the test verdict is assigned. If expected and
observed responses differ, then a fault has been
discovered which is indicated by a test verdict fail. A
successful test is indicated by a test verdict pass.

TTCN-3 allows an easy and efficient description of
complex distributed test behavior in terms of sequences,
alternatives, loops and parallel stimuli and responses.
Stimuli and responses are exchanged at the interfaces of
the system under test, which are defined as a collection of
ports. The test system can use a number of test
components to perform test procedures in parallel.
Likewise to the interfaces of the system under test, the
interfaces of the test components are described as ports.

TTCN-3 is a modular language and has a similar look
and feel to a typical programming language. However, in
addition to the typical programming constructs, it contains
all the important features necessary to specify test

 Integrated Design and Process Technology, IDPT-2003
 Printed in the United States of America, June, 2003
 2003 Society for Design and Process Science

 4

procedures and campaigns for functional, conformance,
interoperability, load and scalability tests like test
verdicts, matching mechanisms to compare the reactions
of the SUT with the expected range of values, timer
handling, distributed test components, ability to specify
encoding information, synchronous and asynchronous
communication, and monitoring.

XML

Web
Service

A
D
A
P
T
O
R

Test
System

Test
Component

Test
Component

Test
Component

Test
Component

(1) Generation of
test data structure

(2) Generation of
test data

(3) Generation of
test behavior

(4) Compilation
to Executable Tests

(5) Adaptor
acc. to the

mapping rules

Figure 3. Testing of Web services with TTCN-3

A TTCN-3 test specification consists of four main
parts:
- type definitions for test data structures
- templates definitions for concrete test data
- function and test case definitions for test behavior
- control definitions for the execution of test cases

The data type definitions are generated from the
corresponding XML schema of the Web service to be
tested. The templates are based on the corresponding data
types and the behavior of the service being tested that
consist of sequences of requests and responses.

An approach towards automated testing of Web
services with TTCN-3 requires therefore the following
steps (see Figure 3).
1. The structure of the test data is derived from the

XML definition with a set of mapping rules from
XML to TTCN-3.

2. Test data (i.e. the concrete values for test stimuli and
observations) is generated.

3. Test configuration (i.e. the communication structure
between test system and system under test) that
respects the structure of the Web service to be tested.

4. Test behavior (i.e. the sequences of test stimuli and
observations) is generated.

5. The resulting TTCN-3 module is compiled to
executable code.

6. The tests are performed using a test adaptor, which
follows the mapping rules for test data structure to
encode and decode the Web service requests and
replies.

Currently, steps (1), (4), and (5) can be automated
with the help of tools. The automation for step (2) and (3)
requires further work: for this step mainly test generation
approaches based on finite state machines or labeled
transition systems will be used. The test adaptor for step
(6) has to be developed only once, so that it can be used
for any Web service and TTCN-3 test following the
mapping rules from step (1).

THE TESTS OF THE TEST FRAMEWORK

The tests of the test framework follow all the same
procedure: the main test component (MTC) creates
parallel test components (PTCs) according to the services
to be tested (the create statement) and according to the
load to be generated (the for loop). Every PTC gets a
concrete test function assigned and is started (the start
statement). Afterwards, the MTC awaits the termination
of all PTCs (the all component.done statement). The
overall test verdict is the accumulated test verdict of the
local test verdicts of the PTCs.

The generic test cases can be controlled with a
general test case control mechanism like shown in
Figure 4. Firstly in the control part, the functionality of
each service offered by a Web service is tested. The
results of the tests are recorded and are used as a basis to
guide the further execution of the test campaign. If for
example, a functional test for a service fails, it is
meaningless to test for service interaction and load
aspects for this service. Subsequent to the functional tests,
load tests for the successfully tested services are
performed with an increasing load. Afterwards, service
pairs are taken in order to test for service interaction.
Finally, the successfully tested service pairs are tested for
increasing load. Both, the services to be tested, the
maximal load for a service test and the increase for the
load tests have to be determined by test execution only –
these values are declared as external constants to the
TTCN-3 module representing the Test Framework. The
control part can be enhanced to reflect other test
combinations for e.g. not only tests for service pairs but
service sets.

Another aspect of this test framework is the
evaluation of the final verdict: in functional and
conformance testing every failure detected by a single test
component will lead to an overall fail of the complete test.
This is also the built-in verdict mechanism of TTCN-3.
However, in load tests this is not applicable: a load tests
checks whether certain thresholds like “99% request are
successful” are fulfilled. Therefore, a specific verdict type
has to be used to handle the collection of the local PTC
verdict and to accumulate them according to the
requirements of specific tests.

 Integrated Design and Process Technology, IDPT-2003
 Printed in the United States of America, June, 2003
 2003 Society for Design and Process Science

 5

 module TestFrameWork {
 type record ServiceLoad {
 integer Service, // the service to be tested
 integer Load // the maximal load for the service
 }
 external const ServiceLoad Services[]; // array of services to be tested
 external const integer increase; // load increase for the load tests
...
 control {
 var integer serviceno:= sizeof(Services);

 var verdicttype ServicesResult[serviceno]; // test result per service

 for (var integer j:=1; j<=serviceno; j:=j+1) { // functional test per service
 ServicesResult[j]:= execute(SeparateFunctionalTest(Services[j].Service));
 }
 for (var integer j:=1; j<=serviceno; j:=j+1) { // load test per service
 if (ServicesResult[j] == pass) {
 for (var integer k:= increase; k <= Services[j].Load; j:= j+increase) {

 // load tests with increasing load
 if (ServicesResult[j] == pass) {

 ServicesResult[j]:= execute(SeparateLoadTest(Services[j].Service, k));
 } } } }

 var verdicttype ServicesMixResult[serviceno][serviceno]; // test result per service pair

 for (var integer j:=1; j<=serviceno; j:=j+1) { // service interaction test per service pair
 if (ServicesResult[j] == pass) {
 for (var integer k:=1; k<=serviceno; k:=k+1) {
 if (ServicesResult[k] == pass) {
 const integer ServicePair[2]:= {Services[j].Service, Services[k].Service };
 ServicesMixResult[j][k]:= execute(ServiceInteractionTest(ServicePair));
 } } } }

 for (var integer j:=1; j<=serviceno; j:=j+1) { // mixture load test per service pair
 for (var integer k:=1; k<=serviceno; k:=k+1) {
 if (ServicesMixResult[j][k] == pass) {
 const integer ServicePair[2]:= {Services[j].Service, Services[k].Service };
 for (var integer l:= increase; l <= Services[j].Load; l:= l+increase) {
 // load tests with increasing load
 for (var integer m:= increase; m <= Services[k].Load; m:= m+increase) {
 const integer PairLoad[2]:= { l, m };
 ServicesMixResult[j][k]:= execute(MixedServiceLoadTest(ServicePair, PairLoad));
 } } } } }
 }
}

Figure 4. Execution Control for the Test Framework

For that, the MTC was extended to handle the
arbitration of PTC verdict to the overall test verdict.

REALIZATION WITH TTCN-3

This section completes the discussion of automating
the test framework with TTCN-3. A core element of the
automation is the definition of a XML to TTCN-3
mapping, which supports the derivation of test data types
from XML schema definitions, and is therefore the basis
for testing of XML interfaces with TTCN-3. The mapping
rules from XML to TTCN-3 have been provided in [13].

Test data

Templates are used to define the concrete test data to
be used for requests to and responses from the Web
service. Figure 5 contains example templates to request
the weather in Berlin and London and to receive
respective responses. The response template uses patterns
to indicate ranges of acceptable values. For example, the
temperature should be given in the response, but the
concrete value is open.

We work on approaches towards the automated
generation of test data by using the classification tree
method [11] being implemented in the CTE tool. This

method enables the generation of exhaustive templates for
requests, however, needs to be extended to enable the
generation of response templates with patterns as well.

 template weatherRequest getWeatherBerlin :=
{

location := {city := "berlin", country := "germany"},
timeframe := { dateWeather := today,
 fromTime := noon,
 toTime := midnight
 }

};
template weatherRequest getWeatherLondon
modifies getWeatherBerlin :=
{

location := {city := "london", country := "england"}
};
template weatherResponse get_response
(charstring theCity, charstring theCountry) :=
{

location := {city := theCity, country := theCountry},
timeframe := ?,
temperature := ?,
conditions := ?,
barometric_pressure := ?

};

Figure 5. Test data for the Weather service

Test configuration

In addition to the structure of the test data, the test
configuration in terms of test components and ports have

 Integrated Design and Process Technology, IDPT-2003
 Printed in the United States of America, June, 2003
 2003 Society for Design and Process Science

 6

to be generated (see Figure 6). We use a message port to
access a Web service. This port can transfer request and
response messages. Furthermore, we use a varying set of
parallel test components (PTC) to represent separate
functional tests, service interaction tests, separate load
tests and load tests for service mixtures. Every PTC like
the SUT has a port to represent the Web service interface.

The PTCs use the same basic test functions to stimuli
requests and observe responses. The main test component
(MTC) controls the dynamic creation of the test
components according to the kind of tests. The tests with
several components are parameterized, so that the actual
number of test components emulating the use of a certain
service vary depending on the current value of the
parameters.

 type port WeatherService message {

out weatherRequest;
in weatherResponse;

}
type component SUTType {

port WeatherService weatherservice_port;
}
type component PTCType {

port WeatherService weatherservice_port;
timer T_wait := 1.0;

}
type component MTCType {}

Figure 6. Test components

Basic test function for the weather service

The basic test function for the weather service is
depicted in Figure 7.

It consists mainly of a pair of request and response to
the Weather service. If the expected response is received,
a pass is assigned. In addition, unexpected and no
response are handled – these cases lead to fail. The log
information logs received response or the timeout and the
respective time stamp.

 function SeparateFunctional(integer Service)
runs on PTCType {
 map(self: weatherservice_port, system: weatherservice_port);
 if (Service == 1) //normal weather service
 {
 weatherservice_port.send(getWeatherLondon);
 log(getWeatherLondon); T_wait.start;
 alt {
 [] weatherservice_port.receive
 (get_response("london", "england")) {
 log(get_response("london", "england"));
 verdict.set(pass)
 }
 [] weatherservice_port.receive /*unexpected response */ {
 log(“unexpected response”); verdict.set(fail)
 }
 [] T_wait.timeout /* no response */ {
 log(“timeout”); verdict.set(fail)
 }
 }
 }
 else ...
 stop;
}

Figure 7. Basic test function for the Weather service

The map operation at the beginning enables the
communication of the PTC to the Weather service. The if
statement allows to differentiate the test behavior
according to the service to be tested.

This basic test function is specific to the Web service
to be tested, but has to be developed once and can then be
reused for the various types of tests presented above.

CONCLUSION

TTCN-3 is the new test specification and
implementation technique being applicable to a wide
range of test kinds for various system technologies [14]. It
is also suited for system level testing. This paper discusses
system level tests for Web services with TTCN-3. Beyond
the functional and load aspects, aspects like security,
privacy, availability, accuracy and usability have to be
tested.

The paper presents a flexible test framework for Web
services realized in TTCN-3. The tool environment
supporting this test framework consists of a TTCN-3 to
Java compiler TTthree [12], an XML to TTCN-3
conversion tool and a test adaptor for XML/SOAP
interfaces. The adaptor is generic and enables the testing
of any Web service using XML/SOAP interfaces. In order
to use this adaptor the mapping rules from XML to
TTCN-3 have to be respected by the tests being defined in
TTCN-3.

The test framework is developed for Web services
with XML/SOAP interfaces and provides functional,
service interaction, and load tests with flexible test
configurations and varying load. Which aspect of a Web
service is tested, is defined by basic test functions: a
functional test will check for the request/response
behavior, a security test will check for data integrity,
authorization, encryption, etc.

The provided test framework with its test hierarchy is
generic as it can be used for arbitrary Web services. The
specifics of a concrete Web service are handled within
basic test functions emulating the use of the services
offered by a Web service. These basic test functions are
reused by the kinds of tests provided in the test hierarchy.

A further key element of the test framework is the
automated translation of XML data to TTCN-3, so that
test skeletons can be generated directly from the
specification of a Web service. For that, XML DTDs and
Schemas have been analyzed and mapping rules have
been developed. These rules are realized by a conversion
tool from XML to TTCN-3. The conversion tool together
with the TTCN-3 compiler and execution environment
TTthree provides us a complete tool chain for test data
type generation, test development, implementation and
execution.

The principles of the test framework can be applied to
other systems and system components such as other

 Integrated Design and Process Technology, IDPT-2003
 Printed in the United States of America, June, 2003
 2003 Society for Design and Process Science

 7

middleware or Internet technologies as well. However, if
the data specification technique changes, another mapping
to TTCN-3 data structures and a corresponding test
adaptor will be needed.

 testcase SeparateFunctionalTest
(integer Service)
runs on MTCType system SUTType
{
 var PTCType PTC:= PTCType.create;
 PTC.start(SeparateFunctional(Service));
 all component.done
}

testcase ServiceInteractionTest
(intarray Service)
runs on MTCType system SUTType
{
 var integer serviceno:= sizeof(Service);
 var PTCType PTC[serviceno];
 for (var integer j:=1; j<= serviceno; j:= j+1)
 {
 PTC[j]:= PTCType.create;
 PTC[j].start(SeparateFunctional(Service[j]));
 }
 all component.done
}

testcase SeparateLoadTest
(integer Service, integer Load)
runs on MTCType system SUTType
{
 var PTCType PTC[Load];
 for (var integer j:=1; j<= Load; j:= j+1)
 {
 PTC[j]:= PTCType.create;
 PTC[j].start(SeparateFunctional(Service));
 }
all component.done
}

testcase MixedServiceLoadTest
(intarray Service, Load)
runs on MTCType system SUTType
{
 var integer serviceno:= sizeof(Service);
 for (var integer j:=1; j<= serviceno; j:= j+1)
 {
 var PTCType PTC[Load[j]];
 for (var integer k:=1; k<= Load[j]; k:= k+1)
 {
 PTC[k]:= PTCType.create;
 PTC[k].start(SeparateFunctional(Service[j]));
 }
 }
 all component.done
}

Figure 8. Test cases for the different kinds of

tests in the Test Framework

While the paper concentrates on functional and load
tests, more work on the basic test functions to address
additional aspects is needed. Furthermore, test patterns
beyond the presented functional, service interaction, and
load tests should be investigated. In any case, test
automation will be essential to a sound and efficient
automated system level test process, for the assessment of
the functionality, performance and scalability of systems.

Future work will further elaborate methods for test
data and test behavior generation. In particular, the
classification tree method will be investigated for
potential extension towards the generation of TTCN-3
templates. The generation of test behavior skeletons from
Message Sequence Chart (MSC) specifications is under
development. Special emphasis will be given to
distributed test configurations with appropriate
coordination and synchronization between test
components.

The development of the UML Testing Profile at
OMG [15] will ease the integrated design and
development of test systems together with the system
itself – system level tests can be developed on an abstract
level on the basis of use cases and use scenarios. The
mapping of the UML Testing Profile to TTCN-3 enables
the direct execution of such tests on TTCN-3
infrastructures.

REFERENCES

[1] W3C: Extensible Markup Language (XML) 1.0, W3C
Recommendation, 6 October 2000,
http://www.w3.org/TR/2000/REC-xml-20001006

[2] W3C: XML Schema Part 0,1,2: Primer, Structures,
Datatypes, W3C Recommendations, 2 May 2001,
http://www.w3.org/TR/2001/REC-xmlschema-{0,1,2}-
20010502

[3] R. Jeliffe: The XML Schema Specification in Context
http://www.ascc.net/~ricko/XMLSchemaInContext.html

[4] W3C: Simple object Access Protocol (SOAP) 1.1, W3C
Note 08 May 2000, http://www.w3.org/TR/SOAP

[5] B. McLaughlin: Java & XML, 2nd edition, O'Reilly,
Chapter 12: SOAP.

[6] Don Box MSDN magazine on the Web: A Young person's
guide tot the simple object access protocol: SOAP increases
interoperability across platforms and languages.

[7] ETSI MTS: The Testing and Test Control Notation TTCN-
3, Part 1: TTCN-3 Core Language / ETSI ES 201873-1
V2.0.0 (2001-03), http://www.etsi.org

[8] I. Schieferdecker, S. Pietsch, T. Vassiliou-Gioles:
Systematic Testing of Internet Protocols - First Experiences
in Using TTCN-3 for SIP. 5th IFIP Africom Conference on
Communication Systems, Cape Town, South Africa, May
2001.

[9] M. Ebner, A. Yin, M. Li: Definition and Utilisation of
OMG IDL to TTCN-3 Mapping. – 16th Intern. IFIP
Conference on Testing Communicating Systems (TestCom
2002), Berlin, March 2002.

[10] ANTS (Advanced .NET Testing System), Red Gate
Software, http://www.red-gate.com/ants.htm.

[11] Grochtmann, M., J. Wegener and K. Grimm: Test Case
Design Using Classification Trees and the Classification-
Tree Editor CTE. Proc. of 8th International Software
Quality Week, SanFrancisco, California, USA, pp. 4-A-4/1-
11, 1995.

[12] TTthree (TTCN-3 to Java compiler), Testing Technologies
IST GmbH, http://www.testingtech.de.

[13] I. Schieferdecker, B. Stepien: Automated Testing of
XML/SOAP based Web Services. Proc. Of the GI
Fachtagung “Kommunikation in Verteilten Systemen”,
KIVS 2003, Leipzig, Germany, Febr. 2003.

[14] J. Grabowski, D. Hogrefe, G. Rethy, I. Schieferdecker, A.
Wiles, C. Willcock: An Introduction into the Testing and
Test Control Notation (TTCN-3). Accepted to Appear in
Computer Networks Journal, 2003.

[15] I. Schieferdecker, Z. R. Dai, J. Grabowski, A. Rennoch:
The UML 2.0 Testing Profile and its Relation to TTCN-3.
IFIP 15th Intern. Conf. on Testing Communicating Systems
- TestCom 2003, Cannes, France, May 2003.

